Главная / Образование / Что такое теплопроводность в физике?

Что такое теплопроводность в физике?

Явление теплопроводности заключается в передаче энергии в виде тепла при непосредственном контакте двух тел без какого-либо обмена материей или с ее обменом. При этом энергия переходит из одного тела или области тела, имеющего более высокую температуру, в тело или область с более низкой температурой. Физической характеристикой, которая определяет параметры передачи тепла, является теплопроводность. Что такое теплопроводность, и как ее описывают в физике? На эти вопросы ответит данная статья.

Общее понятие о теплопроводности и ее природа

Если отвечать простыми словами на вопрос о том, что такое теплопроводность в физике, то следует сказать, что передача тепла между двумя телами или различными областями одного и того же тела является процессом обмена внутренней энергией между частицами, составляющими тело (молекулы, атомы, электроны и ионы). Сама внутренняя энергия состоит из двух важных частей: из кинетической и из потенциальной энергии.

Что такое теплопроводность в физике с точки зрения природы этой величины? На микроскопическом уровне способность материалов проводить тепло зависит от их микроструктуры. Например, для жидкостей и газов указанный физический процесс происходит за счет хаотичных столкновений между молекулами, в твердых телах основная доля переносимого тепла приходится на обмен энергией между свободными электронами (в металлических системах) или фононами (неметаллические вещества), которые представляют собой механические колебания кристаллической решетки.

Математическое представление теплопроводности

Ответим на вопрос о том, что такое теплопроводность, с математической точки зрения. Если взять однородное тело, тогда количество тепла, переданного через него в данном направлении, будет пропорционально площади поверхности, перпендикулярной направлению теплопередачи, теплопроводности самого материала и разнице температур на концах тела, а также будет обратно пропорционально толщине тела.

В итоге получается формула: Q/t = kA(T2-T1)/x, здесь Q/t — теплота (энергия), переданная через тело за время t, k — коэффициент теплопроводности материала, из которого изготовлено рассматриваемое тело, A — площадь поперечного сечения тела, T2-T1 — разница температур на концах тела, причем T2>T1, x — толщина тела, через которую передается тепло Q.

Способы передачи тепловой энергии

Рассматривая вопрос о том, что такое теплопроводность материалов, следует упомянуть о возможных способах передачи тепла. Тепловая энергия может передаваться между различными телами с помощью следующих процессов:

  • проводимость — этот процесс идет без переноса материи;
  • конвекция — перенос тепла непосредственно связан и с движением самой материи;
  • излучение — передача тепла осуществляется за счет электромагнитного излучения, то есть с помощью фотонов.

Чтобы тепло было передано с помощью процессов проводимости или конвекции, необходим непосредственный контакт между различными телами с тем отличием, что в процессе проводимости не существует макроскопического движения материи, а в процессе конвекции это движение присутствует. Отметим, что микроскопическое движение имеет место во всех процессах теплопередачи.

Для обычных температур в несколько десятков градусов Цельсия можно сказать, что на долю конвекции и проводимости приходится основная часть передаваемого тепла, а количество энергии, переданной в процессе излучения, является незначительным. Однако излучение начинает играть главную роль в процессе теплопередачи при температурах в несколько сотен и тысяч Кельвин, поскольку количество энергии Q, передаваемой этим способом, растет пропорционально 4-й степени абсолютной температуры, то есть ∼ T4. Например, наше солнце теряет большую часть энергии именно за счет излучения.

Теплопроводность твердых тел

Так как в твердых телах каждая молекула или атом находятся в определенном положении и не могут его покинуть, то передача тепла с помощью конвекции оказывается невозможной, и единственным возможным процессом является проводимость. При увеличении температуры тела кинетическая энергия составляющих его частиц увеличивается, и каждая молекула или атом начинают интенсивнее колебаться. Этот процесс приводит к их столкновению с соседними молекулами или атомами, в результате таких столкновений передается кинетическая энергия от частицы к частице до тех пор, пока все частицы тела не будут охвачены этим процессом.

В результате описанного микроскопического механизма при нагреве одного конца металлического стержня температура через некоторое время выравнивается по всему стержню.

Тепло не передается одинаково в различных твердых материалах. Так, существуют материалы, которые обладают хорошей теплопроводностью. Они легко и быстро проводят тепло через себя. Но также существуют плохие теплопроводники или изоляторы, через которые тепло практически не проходит.

Коэффициент теплопроводности для твердых тел

Коэффициент термической проводимости для твердых тел k имеет следующий физический смыл: он указывает на количество теплоты, которое проходит за единицу времени через единицу площади поверхности в каком-либо теле единичной толщины и бесконечной длины и ширины при разнице температур на его концах, равной одному градусу. В международной системе единиц СИ коэффициент k измеряется в Дж/(с*м*К).

Данный коэффициент в твердых веществах зависит от температуры, поэтому его принято определять при температуре 300 K с целью сравнения способности проводить тепло различными материалами.

Коэффициент теплопроводности для металлов и неметаллических твердых материалов

Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.

В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):

  • сталь — 47-58 в зависимости от марки стали;
  • алюминий — 209,3;
  • бронза — 116-186;
  • цинк — 106-140 в зависимости от чистоты;
  • медь — 372,1-385,2;
  • латунь — 81-116;
  • золото — 308,2;
  • серебро — 406,1-418,7;
  • каучук — 0,04-0,30;
  • стекловолокно — 0,03-0,07;
  • кирпич — 0,80;
  • дерево — 0,13;
  • стекло — 0,6-1,0.

Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.

Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.

Конвекция в жидкостях и газах

Передача тепла в текучих средах осуществляется за счет процесса конвекции. Этот процесс предполагает перемещение молекул вещества между зонами с различной температурой, то есть при конвекции происходит перемешивание жидкости или газа. Когда текучая материя отдает тепло, ее молекулы теряют часть кинетической энергии, и материя становится более плотной. Наоборот, когда текучая материя нагревается, ее молекулы увеличивают свою кинетическую энергию, их движение становится более интенсивным, соответственно, объем материи увеличивается, а плотность уменьшается. Именно поэтому холодные слои материи стремятся опуститься вниз под действием силы тяжести, а горячие слои пытаются подняться вверх. Этот процесс приводит к перемешиванию материи, способствуя передачи тепла между ее слоями.

Коэффициент теплопроводности некоторых жидкостей

Если отвечать на вопрос о том, что такое теплопроводность воды, то следует понимать, что она обусловлена конвекционным процессом. Коэффициент теплопроводности для нее равен 0,58 Дж/(с*м*К).

Для других жидкостей эта величина приведена в списке ниже:

  • этиловый спирт — 0,17;
  • ацетон — 0,16;
  • глицерол — 0,28.

То есть значения теплопроводности для жидкостей сравнимы с таковыми для твердых теплоизоляторов.

Конвекция в атмосфере

Важность атмосферной конвекции велика, поскольку благодаря ней существуют такие явления, как ветры, циклоны, образование облаков, дожди и другие. Все эти процессы подчиняются физическим законам термодинамики.

Среди процессов конвекции в атмосфере самым важным является круговорот воды. Здесь следует рассмотреть вопросы о том, что такое теплопроводность и теплоемкость воды. Под теплоемкостью воды понимается физическая величина, показывающая, какое количество теплоты необходимо передать 1 кг воды, чтобы ее температура увеличилась на один градус. Оно равно 4220 Дж.

Круговорот воды осуществляется следующим образом: солнце нагревает воды Мирового океана, и часть воды испаряется в атмосферу. За счет процесса конвекции водяной пар поднимается на большую высоту, охлаждается, образуются облака и тучи, которые приводят к возникновению осадков в виде града или дождя.

Источник: bisbroker.ru